D1AMT2102

(Pages:2)

Name:

Reg. No.:

FIRST SEMESTER M. Sc. DEGREE EXAMINATION, NOVEMBER 2021 (Regular/Improvement/Supplementary) MATHEMATICS FMTH1C02 - LINEAR ALGEBRA

Time: 3 hours

Maximum weightage: 30

PART A

Answer all questions. Each question carries 1 weightage.

- 1. If F is a field, then verify that F^n is a vector space over the field F.
- 2. Prove that the only subspaces of \mathbb{R}^1 are \mathbb{R}^1 and the zero subspace.
- 3. Let V be the real vector space of all polynomial functions from R into R of degree 2 or less, i.e., the space of all functions f of the form

 $f(x) = c_0 + c_1 x + c_2 x^2.$

Let t be a fixed real number and define

$$y_1(x) = 1, g_2(x) = x + t, g_3(x) = (x + t)^2.$$

Prove that $\mathcal{B} = \{g_1, g_2, g_3\}$ is a basis for V. If $f(x) = c_0 + c_1 x + c_2 x^2$, what are the coordinates of f in this ordered basis \mathcal{B} ?

- 4. Define a dual space of a vector space. Prove that the dimensions of finite dimensional vector space and its dual space are equal.
- 5. Justify that similar matrices have the same characteristic polynomial.
- 6. State Cayley-Hamilton theorem.
- 7. Let W_1, \ldots, W_k be subspaces of the vector space V. When do we say that W_1, \ldots, W_k are independent?
- 8. Define inner product on a vector space V.

 $(8 \ge 1 = 8 \text{ weightage})$

PART B

Answer any two questions from each unit. Each question carries 2 weightage.

UNIT I

- 9. Show that the vectors $\alpha_l = (1, 0, -1), \alpha_2 = (1, 2, 1), \alpha_3 = (0, -3, 2)$ form a basis for \mathbb{R}^3 . Express each of the standard basis vectors as linear combinations of α_l, α_2 and α_3 .
- 10. Let T be a linear transformation from V into W. Prove that T is non-singular if and only if T carries each linearly independent subset of V onto a linearly independent subset of W.
- 11. Define isomorphism of vector spaces V onto W. Prove that every n-dimensional vector space over the field F is isomorphic to the space F^n .

UNIT II

- 12. Let T be the linear operator on \mathbb{R}^3 defined by $T(x_1x_2, x_3) = (3x_1 + x_3, -2x_1 + x_2, -x_1 + 2x_2 + 4x_3).$ Find the matrix of T in the standard ordered basis for \mathbb{R}^3 ?
- 13. Prove that the trace function is a linear functional on the matrix space F^{nXn} .
- 14. Let V be a finite-dimensional vector space over the field F, and let W be a subspace of V and W^0 be the annihilator of W. Then show that $\dim W + \dim W^0 = \dim V$.

UNIT III

- 15. Let V be a finite-dimensional vector space and let W_1, \ldots, W_k be subspaces of V such that $V = W_1 + \ldots + W_k$ and dim $V = \dim W_1 + \ldots + \dim W_k$. Prove that $V = W_1 \oplus \ldots \oplus W_k$.
- 16. Show that an orthogonal set of non-zero vectors is linearly independent.

17. Prove that

- (a) $|(\alpha|\beta)| \leq ||\alpha|| ||\beta||$ and
- (b) $||\alpha + \beta|| \le ||\alpha|| + ||\beta||.$

 $(6 \ge 2 = 12 \text{ weightage})$

PART C

Answer any two questions. Each question carries 5 weightage.

- 18. Let V be an n-dimensional vector space over the field F, and let W be an m-dimensional vector space over F. Then, show that the space L(V,W) is finite-dimensional and has dimension mn.
- 19. If f is a non-zero linear functional on the vector space V, then prove that the null space of f is a hyperspace in V. Also show that every hyperspace in V is the null space of a non-zero linear functional on V.
- 20. Let V be a finite-dimensional vector space over the field F and let T be a linear operator on V. Then prove that T is diagonalizable if and only if the minimal polynomial for T has the form $p = (x - c_1) \dots (x - c_k)$ where c_1, \dots, c_k are distinct elements of F.
- 21. Let V be an inner product space and let $\{\beta_1, \ldots, \beta_n\}$ be any independent vectors in V. Then construct orthogonal vectors $\alpha_1, \ldots, \alpha_n$ in V using Gram-Schmidt orthogonalization process so that $\{\alpha_1, \ldots, \alpha_n\}$ is a basis for the subspace spanned by β_1, \ldots, β_n .

 $(2 \times 5 = 10 \text{ weightage})$